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 One of the biggest challenges in human-agent interaction (HAI) is  

the development of an agent such as a robot that can understand its partner  

(a human) and interact naturally. To realize this, a system (agent) should be 
able to observe a human well and estimate his/her mental state. Towards this 

goal, in this paper, we present a method of estimating a child's attention,  

one of the more important human mental states, in a free-play scenario  

of child-robot interaction (CRI). To realize attention estimation in such CRI 

scenario, first, we developed a system that could sense a child's verbal  
and non-verbal multimodal signals such as gaze, facial expression, 

proximity, and so on. Then, the observed information was used to train  

a model that is based on a Support Vector Machine (SVM) to estimate  

a human's attention level. We investigated the accuracy of the proposed 

method by comparing with a human judge's estimation, and obtained some 
promising results which we discuss here. 
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1. INTRODUCTION 

Interaction between humans and agents such as computers, robots, etc., has long been studied in  

the field of human-agent interaction (HAI). In human-computer interaction (HCI), a great deal of effort  

has been made in developing computer interfaces [1-3]. The purpose of those studies is to make better 

interfaces that can interact with humans in a natural (that is, more human-like) manner. As methods in 

robotics have advanced, robots have become more commonplace in humans' daily lives. This progress  

has led to increased interest in the field of human-robot interaction (HRI) towards the development of robots 

that can interact naturally with humans. By “natural interaction,” we usually refer to interfacing by oral  

and gesture commands and reports. However, an essential part of natural interaction is deeply related to 

aspects of human behavior driven by human intention and other mental states. 

In considering human-to-human interaction, humans respond according to their partner's  

actions during interaction. Verbal and non-verbal signals can be observed. Therefore, it can be said  

that information is exchanged during the interaction. Several investigations have addressed this issue, 

including studies of verbal and/or nonverbal communication as well as their application to robots [4-6]. 

However, the communication signals implemented in these studies were rather artificial and therefore did not 

provide sufficient data to understand more natural human-robot interactions. To realize human-like,  

mental-state based, interaction, we need to estimate the mental states of human based on the observable 
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information. Such information is normally acquired by our sensory systems such as vision, audition and so 

on. We strongly believe that the same information can be applied to a natural HRI scenario. Thus, in order to 

create such scenarios, we needed to solve two problems . First, the systems (including the robot itself),  

needed to be able to observe a set of features of human behavior, i.e., utterance, gaze, distance, and so forth,  

that might represent the human mental state. Second, we needed a classifier able to estima te human mental 

states such as arousal, attention, mood, etc. from the observed signals. 

Additionally, it is possible to roughly segregate target HRI groups into children, adults, and elderly 

according to the subject of interaction. Although in general, similar considerations can be made for all  

three groups, we focused on child-robot interaction (CRI) in this study, because unlike adults, children tend 

not to feign their feelings and observations would be easier. We consider that this approach could  

be advantageous for evaluation in this field. In CRI, there are several related studies [7-10].  

Methods of controlling robots able to act as friends or playmates have been discussed in [7-8]. And although 

the results were encouraging, the scenarios were overly controlled. In [9-10], studies were conducted on  

the interaction between robots and children in more natural settings, or “in the wild,” as it is said.  

Although these efforts were ground-breaking and related to our research, their action decision analysis was 

based on direct physical observation and not on the mental state, thus limiting its application to the specific 

tasks of the experimental design. 

Therefore, in our study, we focused on attention estimation of children playing freely with a robot as 

a simple but typical example of mental state-based interaction. To this end, we first developed a system 

including sensor networks and a remotely operated robot to enable free -interaction with the children.  

Over 23 3-6 year-old children participated in our interaction experiment and a total of 60 minutes interaction 

was recorded. In a pilot study, we investigated one of the subjects which interacted for five to six minutes 

with the robot. Figure 1 shows some scenes from the free-play interaction. We processed the data  

and extracted the features of proximity, eye gaze, emotion in facial expression, and behaviors, as well as a set 

of attention values labelled by human judges. We then utilized a Support Vector Machine (SVM) to estimate 

the attention level. We determined the accuracy of the proposed method by comparing with the expert 

judgments, and some promising results were obtained which we report here. 
 

 

 
 

Figure 1. Child-robot interaction scenes: free-play 
 
 

Several other studies relate to ours [11-22]. An interesting discussion related to gaze estimation has 

been elaborated in [11], and an alternative solution to gaze estimation was proposed in [12]. A model for 

adaptive emotion expression was developed in [13], and the work in [14] closely relates to our study. 

However, although the gaze is an effective signal for the attention estimation, gaze alone is insufficient for 

the estimation of emotion or intention. What distinguishes our study from these others is the use  

of information acquired through free-play in the CRI scene. In [15-16], vision-based attention information 

was proposed. However, those studies employed tasks different to those we applied here. The works that 

discussed the visual recognition system implemented on the robot [17-20] and computer vision [21-31] were 

important to obtain a better sensing in this study. Moreover, the scenarios proposed in [32-33] were also 

interesting to be implemented in our system. The remainder of this paper is organized as follows:  

An overview of the proposed child-robot interaction framework followed by the details of its components is 

described in the next section. Experimental results are discussed in section 2 followed by a discussion in 

section 4. Finally, section 5 concludes this study. 
 

 

2. PROPOSED METHOD 

The proposed child-robot interaction (CRI) framework is depicted in Figure 2. As illustrated  

in Figure 2(a), the proposed CRI framework incorporates global and local sensing. The proposed framework 

consists of: (1) sensor networks, (2) a robot platform, (3) robot remote operation, (4) database,  

and (5) modeling. The details of each part are discussed as follows. 
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2.1. Sensor networks 

To provide global sensing, we developed a sensor network, shown in Figure 2(b). Sensor networks 

consisted of four Kinect sensors and four stereo microphones used to capture audio information during  

the interaction. From the Kinect sensor, color and depth information was collected at 30 fps, which was used 

to detect human information including position, face, etc. as well as acquiring information about the robot. 

These cues were used for feature extraction (see section 2.5). 
 
 

 
 

Figure 2. Overview of proposed child-robot interaction framework, (a) Child-robot interaction framework,  

(b) Sensors used in this study, and (c) “Softbank Robotics' Pepper”: robot platform 
 
 

2.2. Robot platform 

In this study, the commercially-available “Pepper” robot, shown in Figure 2 (c) developed by 

Softbank Robotics was used. This robot can be roughly divided into three parts, i.e., head, upper body,  

and lower body. The head consists of one depth camera and two RGB cameras that are calibrated,  

four microphones, and three touch sensors. Using the RGB and depth cameras, this robot is able to det ect  

and track humans faces by exploiting the API provided by the robot platform. The touch sensors built into  

the robot's head can be used for touch-interaction. The upper body of the robot consists of two arms with six 

degrees of freedom (DOF) each, a two-DOF neck, and a one-DOF waist. This body structure enables  

the robot to move freely as well as perform human-like motions such as bowing. The lower body is based on 

omnidirectional wheels, two sonar sensors, six laser sensors, three bumper sensors, and two infrared sensors. 

Using these sensors, the robot is not only able to navigate freely but also can detect obstacles and avoid 

collisions. This safety function is rather important in CRI scenarios. A computer built into the robot is used 

for computation and communication between the modules. The robot is also capable of wireless 

communication, which can be used to transmit acquired data for multipurpose application. 

 

2.3. Robot teleoperation system 

In the first step of our study, we implemented a teleoperation system in the robot to enable  

human-like responses. This ability is important in dealing with children, especially during the first meeting, 

to encourage longer interaction. Moreover, it is quite difficult to apply autonomous action decisions to  

the robot for a natural interaction on the first try. To tackle such a problem, we collected data in this first step 

using a teleoperation system and created a model based on the captured data to enable more natural  

child-robot interaction.  

The teleoperation system consisted of: (1) a motion control module, (2) a speech module,  

and (3) a navigation module. In the control room, a Kinect sensor, one microphone, and a joystick were used 

to control the robot. An expert kindergarten teacher who was also a children's education specialist 

teleoperated the robot from the control room. Thanks to the sensor networks, the CRI could be observed in 

real time. First, we used a face-tracking API and skeleton-tracking API from the Microsoft Kinect API to 

capture the head movements and body movements of the operator, respectively. We then integrat ed these 

signals in order to guide the robot's movements. Next, for the speech module, we used Google's speech 
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recognition. The utterances of the operator were recognized, and the results were used to generate the robot's 

voice. It should be noted that this process is necessary since the robot's voice should differ from  

the operator's. Finally, we applied a simple module to control the robot's base using a joystick. 

 

2.4. Multimodal data collection 

We collected a multimodal dataset which can be roughly div ided into (1) the data from the robot  

via local sensing as well as its internal state, (2) the environment including the human and robot,  

and (3) the operation records. These data mainly consisted of color and depth information and audio 

information. We also annotated the data according to the expert's judgments. 

 

2.5. Attention estimation 

The captured multimodal data was processed to extract features for input of the attention estimation 

model. To model attention, we considered gaze, utterance, behavior, proximity, and emotion of the child 

interacting with the robot as well as the input data. In a preliminary effort, we considered a simple Support 

Vector Machine (SVM) to categorize the child's attention based on the observed data. An SVM [34] learns 

by mapping the training data to a higher dimensional feature space using a kernel function and constructing  

a separating hyperplane to achieve maximum margin between classes. In this study, a publicly available 

library LIBSVM [35] was used because it provides a probabilistic estimation which is fast and easy  

to implement. Each of the features described below is normalized to one for a better depiction of multimodal 

data input. 

 

2.5.1. Manually extracted features  

One of the purposes of this study was to realize natural CRI as human beings do.  

It is straightforward to study and compare the features that come from the human to ones that are calculated 

by machines. Thus, we extracted the gaze, utterance, and other behaviors by asking the judges what their 

considerations were when judging the scenes. The gaze was set to zero when the child was considered not to 

be looking at the robot, and otherwise, it was set to one. For utterances, when the child was talking to  

the robot, it was set to one, and otherwise, to zero. We also asked the judges to rate the behavior of the child 

towards the robot on a 0-3 scale based on interest. It should be noted that features were extracted on  

a second-by-second basis. 

 

2.5.2. Automatically extracted features  

Given the set of calibrated color and depth information as shown in Figure 3(a), Figure 3(b),  

Figure 3(c), and Figure 3(d). We performed a 3D segmentation using the publicly available library PCL [36] 

to separate human and robot signals.  
 
 

 
 

Figure 3. Examples of scene segmentation and face processing, (a) Input color image (1920 x 1080) with 

detected face illustrated in red rectangle, eyes, and mouth, (b) Depth image (512 x 424), (c) Segmented scene 

(512 x 424), and (d) Extracted robot and child (512 x 424). Each image is calibrated and the rectangles  

as well as their center positions in (a) and (c) correspond  



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 3, June 2020 :  1220 – 1228 

1224 

The idea of the 3D segmentation is (1), to detect the plane and isolate point clouds which belong to 

the plane, and (2), to cluster the remaining points. These steps are depicted in Figure 3(c) given Figure 3(b) 

as an input depth image. After extracting the plane, we use connected -component labeling [37] to reduce  

the noise caused by the Kinect sensors. We then calculated the position of detected objects by considering  

the center of gravity of the cluster, and the Euclidean distance between the robot and the human could then 

easily be calculated. 

For face detection, we applied image processing provided by [38-40]. Thanks to [38] and [40],  

the parts of the face including the eyes and mouth could be detected as well as estimates of facial expression 

including neutrality, happiness, surprise, anger, and sadness could be taken. Given the position of the eyes 

and mouth, we were able to draw a triangle as shown in Figure 3(a) in color space. Corresponding points 

were then calculated in the depth space. We then calculated the normal vector of the triangle plane.  

The robot's head position could also easily be obtained. Here, gaze was defined as the inner product of  

the robot's normal vector and child's normal vector. The greater this value, the greater the tendency the robot 

and the child were looking at each other. 

 

 

3. EXPERIMENTS 

We implemented the CRI framework and conducted experiments. The objectives of these 

experiments were as follows. First, we wanted to investigate the features used by the experts and compare 

these with the automatically extracted ones. Second, we wanted to test the attention estimation model given 

the proposed features. The experiments were conducted at a kindergarten and 23 children (13 boys  

and 10 girls, aged three to six years) participated. 

 

3.1. Experimental setup 

A control room and free-play room were used as experimental environments. Figure 4(a)  

and Figure 4(b) show some examples of scenes taken during the experiments. Before the children entered  

the play room (see Figure 4 (b)), they were encouraged to play in a playground as shown in Figure 4(a). 

Considering that the problem-setting in this study was free-play, no explicit instructions were given to  

the children. They were just told that there was a robot in the free-play room. After entering the play room, 

the children interacted freely with the robot as illustrated in Figure 4(b). 

An expert, who is a kindergarten teacher and analyzes children's education operated the robot  

as shown in Figure 4(c). Our teleoperation system greatly facilitated the manipulation of the robot.  

Some examples of skeleton data, facial data, and the robot's movements are illustrated in Figure 4(c).  

From the figure, we could see that the robot could follow the operator. At the same time, the operator 

observed the play room and responded to the children's questions or asked questions. It should be noted that 

children were not told that the robot was remotely operated. The quantitative evaluation of the overall system 

will remain work in progress. 
 

 

 
 

Figure 4. Examples of scenes taken during the experiments: (a) Play ground, (b) Free-play room,  

and (c) Control room. In the control room, the expert (on the left, in (c)) operated the robot. The upper panel 

in (c) depicts the skeleton data and facial data of the operator, whereas the bottom panel illustrates  

the corresponding movements of the robot 
 

 

All the subjects participated in an interaction experiment and a total of 60 minutes interaction  

was recorded. Several interesting scenes occurred, such as when children asked the robot to engage in  

“make-believe play,” made physical contact by touching the robot's head, and so forth. It should be noted that 

such scenes occured purely and spontaneously, without control by the robot. In preliminary work,  
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we investigated one of the subjects which had interacted fo r five to six minutes with the robot  

(hereafter, referred as a “target subject”). The data collected over all subjects, though, is extensive enough 

that it will take time to fully analyze. However, we found our results promising enough to constitute a goo d 

first approach in the analysis of the free-play situation in CRI and should be valuable in additional studies  

of human-agent interaction. To evaluate the proposed method, we asked six experts to view the video  

of the target subject and make judgments every second, resulting in 303 seconds of annotated videos.  

It should be noted that the labels most selected by the experts were used. We also asked our judges what they  

took into consideration to determine those labels. Based on these responses, the experts were later asked to 

score the gaze, utterance, and behavior for each second of a video. 

 

3.2. Feature extraction and comparison 

The collected multimodal data, consisting of visual (color and depth) information and audio 

information was processed. Figure 5 shows the features that were extracted manually (left) and automatically 

(right) (see section 2.5.1 and 2.5.2), respectively. From the figure we can see the feature variations over time. 

Examples of interaction scenes are shown in Figure 6. It can be seen that at first, the child was eager to 

interact with the robot. This fact was also supported by high gaze and utterance values. The subject wanted to  

talk with the robot so she stomped her foot to draw the robot's attention. When the robot responded to  

the subject, she approached the robot and began a dialogue. The system was also able to estimate the facial 

expression of “happiness” at that time. After a while, the subject became bored and showed signs of wanting 

to retreat. We can see that the distance increased and the gaze value diminished. 
 

 

 
 

Figure 5. Features used in this study 
 
 

 
 

Figure 6. Examples of interaction scenes with corresponded features  
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3.3. Evaluation of attention estimation 

To validate the proposed method, we performed leave-one-out validation (LOOV) on the collected 

data. On occasions such as when the subject approached and hid behind the robot, it was impossible  

to process the data due to occlusion and thus could not be segmented automatically. Excluding these  

data, LOOV was done on 258 data sets. Here, one data set consisted of manually extracted features  

(gaze: one-dimensional feature vector, utterance: one-dimensional feature vector, behavior: one-dimensional 

feature vector) and automatically extracted features (gaze: one-dimensional feature vector, proximity:  

one-dimensional feature vector, facial expressions: five-dimensional feature vector). Here, we tested our 

proposed method using two- and three-classes of SVM.  

In this study, two-classes indicate that the subject was “uninterested” or “interested” in the robot; 

whereas three-classes indicate that the subject was “uninterested” or “less interested” or “in terested”  

in the robot. We have tested several combinations of features as listed in Table 1 and Table 2. We can see 

that both manually- and automatically-extracted features reached their highest rates when all the features 

were included as input except when method number 5 in Table 2 was used due its poor extraction of gaze.  

In addition, the best results of manual and automatic features for each class were written in bold. The results 

proved interesting because in three-classes of attention estimation, the features calculated automatically  

by machine outperformed those of the experts. We address this interesting phenomenon in the next section.  

 

 

Table 1. Manually extracted atures used for attefention estimation  

and their corresponding classification rates 
Features used Classification results 

(two-classes) [%] 
Classification results 
(three-classes) [%] 

Gaze 
Utterance 
Behavior 

Gaze + Utterance 
Gaze + Behavior 
Utterance + Behavior  

80.34 
66.67 
76.92 

80.34 
79.49 
77.78 

54.65 
47.29 
52.71 

58.53 
58.14 
57.36 

Gaze + Utterance + Behavior 82.05 58.91 

 

 

Table 2. Automatically extracted features used for attention estimation  

and their corresponding classification rates  
Features used Classification results 

(two-classes) [%] 

Classification results 

(three-classes) [%] 
Gaze 

Utterance 
Behavior 
Gaze + Utterance 

Gaze + Behavior 
Utterance + Behavior  

75.21 

64.96 
76.92 
70.94 

76.92 
77.78 

54.26 

53.86 
62.40 
57.75 

63.57 
62.40 

Gaze + Utterance + Behavior 78.63 63.57 

 

 

3.4. Discussion 

We can see from Table 1 and Table 2 that the attention estimation results of two -classes for 

manually extracted features were higher than the automatic ones. However, the difference in accuracy  

was less than 4%. It can be said that the proposed automatically-extracted features were similarly predictive 

as compared to the manually extracted ones. Hence, we argue that automatically -extracted features  

can approximately represent the attention level judgments of humans. Next, the results of three -class  

feature extraction both of manually and automatically extracted features were poorer as compared to  

the two-class ones.  

However, a notable point of these results was the slightly better results obtained by automatic 

feature extraction as opposed to manual. We emphasize that a combination of several features proved better 

for attention estimation than a single one. Although we used a simple machine learning algorithm in  

this study, the same thing can be said for the complex one. In the future, we plan to furth er exploit 

multimodality. Attention estimation involving multiple classes is not an easy task even for humans.  

This is one of the reasons that machine learning could outperform human estimation results based on  

human-generated cues. 
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4. CONCLUSION 

We have proposed a method of estimating children's attention, an important human mental state.  

In this study, a free-play scenario of child-robot interaction was considered. To estimate attention level,  

we first proposed a framework for child-robot interaction based on local and global sensing using robots  

and sensor networks. We developed the system ourselves and implemented a teleoperation system for  

the robot. We have also investigated several features that were manually and automatically extracted  

and compared their effectiveness. We found that the combination of all features worked better than those 

based on subsets. Although the proposed automatically -extracted features performed well for higher level 

classification, additional work is required to understand which features and conditions are most predictive  

of successful human-robot interaction. Our goal, therefore is to develop better models that can more fully 

exploit the multiple modalities of the captured data. 
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